
ADAPTIVE SINGLE ACTION CONTROL POLICIES FOR LINEARLY
PARAMETERIZED SYSTEMS ∗

Osama Ennasr†

Smart Microsystems Lab
Department of Electrical and Computer

Engineering
Michigan State University

East Lansing, MI 48823, USA
ennasros@msu.edu

Giorgos Mamakoukas
Neuroscience and Robotics Lab

Department of Mechanical
Engineering

Northwestern University
Evanston, IL 60208, USA

giorgosmamakoukas@u.northwestern.edu

Maria Castaño
Smart Microsystems Lab

Department of Electrical and Computer
Engineering

Michigan State University
East Lansing, MI 48823, USA

castanom@msu.edu

Demetris Coleman
Smart Microsystems Lab

Department of Electrical and Computer
Engineering

Michigan State University
East Lansing, MI 48823, USA

colem404@msu.edu

Todd Murphey
Neuroscience and Robotics Lab

Department of Mechanical
Engineering

Northwestern University
Evanston, IL 60208, USA

t-murphey@northwestern.edu

Xiaobo Tan
Smart Microsystems Lab

Department of Electrical and Computer
Engineering

Michigan State University
East Lansing, MI 48823, USA

xbtan@egr.msu.edu

ABSTRACT
This paper presents an adaptive, needle variation-based

feedback scheme for controlling affine nonlinear systems with
unknown parameters that appear linearly in the dynamics. The
proposed approach combines an online parameter identifier with
a second-order sequential action controller that has shown great
promise for nonlinear, underactuated, and high-dimensional
constrained systems. Simulation results on the dynamics of an
underwater glider and robotic fish show the advantages of intro-
ducing online parameter estimation to the controller when the
model parameters deviate from their true values or are com-
pletely unknown.

Introduction
Model-based techniques such as single-action control poli-

cies (SAP) [1–3], Nonlinear Model Predictive Control (NMPC)
[4], differential dynamic programming (DDP) [5], and trajectory
optimization [6] can generate highly efficient motions that lever-

∗This work was supported by the National Science Foundation (IIS 1319602,
ECCS 1446793, IIS 1715714)

†Address all correspondence to this author.

age, rather than fight, the dynamics of robotic mechanisms. To
effectively generate and track such trajectories, good knowledge
of the underlying system model and its parameters is often re-
quired. In most control applications, however, various unknowns
or uncertainties exist in the plant and its environment. There-
fore, control systems are required to perform autonomously and
intelligently under a variety of operating conditions. To maintain
stability and performance, a successful design must deal with the
unknown model parameters. Whether these parameters are com-
pletely unknown or change with time in an unpredictable manner,
it is natural and effective to use adaptive control strategies [7–9].

Recently, SAP controllers such as first-order and second-
order sequential action control (SAC) have emerged as a fam-
ily of model-based algorithms that seek to find short-duration
control actions that maximally improve, rather than optimize, an
objective over a prediction horizon [1, 3]. These controllers can
be executed quickly and efficiently, which is often a limitation to
traditional methods such as NMPC. In fact, the control solution
has a closed-form expression, allowing single-action policies to
compute real-time, closed-loop responses to a robot’s dynamical
environment [10].

In some control applications, model parameters can be dif-

1

ficult to measure accurately and in some cases they cannot be
measured at all. Rather than estimating these parameters of-
fline, adaptive control relies on an online parameter estimator
that works in conjunction with the controller to measure these
parameters. This approach is especially useful to systems whose
parameters depend on the environment they operate in. The most
popular method of designing adaptive control is the certainty
equivalence principle. That is, a perfect knowledge control is
first designed assuming all parameters are known; then, the adap-
tive control is the same except that the unknown parameters are
replaced by their corresponding estimates; last, adaptation laws
are synthesized to generate the estimates in such a way that the
closed-loop stability and performance are guaranteed. Standard
adaptive control results in [11] and [12] are based on the certainty
equivalence principle and are shown to be effective for the class
of systems whose unknown parameters appear linearly in their
dynamics [13].

Adaptive control of linear time invariant systems is a well-
established discipline whose major theoretical issues have been
fully addressed. Predominant examples of adaptive strategies for
such systems include adaptive pole placement control (APPC)
[14], model reference adaptive control (MRAC) [15], and adap-
tive model predictive control (AMPC) [16]. These strategies,
however, are generally inapplicable to real-world problems as
many applications are inherently nonlinear.

Adaptive control of nonlinear systems, on the other hand,
is an active research area as finding a control law that stabi-
lizes the nonlinear dynamics is challenging and system-specific.
Among the available techniques, adaptive input-output feedback
linearization [17, 18] involves linearizing via feedback the non-
linear system such that the control law cancels all nonlinearities
and forces the closed-loop system to behave as a linear time-
invariant (LTI) system, while a parameter estimator is applied
to estimate the system’s unknown parameters. This approach is
limited as it can only be applied to systems that are feedback-
linearizable. Moreover, feedback linearization may not be able
to cancel out the nonlinearities if they are large due to control
saturation. Another popular nonlinear adaptive control strategy
is adaptive backstepping control [11, 19, 20]. Backstepping con-
trol is also system specific as it requires cancellation of the cross-
coupling terms to ensure the negativeness of the constructed Lya-
punov function. These controllers exploit the specific structure
of the nonlinear dynamics to simplify the process of adaptively
controlling the system.

On the other hand, SAP controllers have shown applicability
to a wide range of nonlinear systems. They also exhibit robust-
ness to model and parameter inaccuracies, primarily by means
of computing fast control-responses and operating in a reactive,
rather than predictive, fashion [2,10]. To further improve perfor-
mance under model inaccuracies, we build on the second-order
SAP controller presented in [3] by employing an adaptive struc-
ture. Specifically, we leverage the robustness and convergence

FIGURE 1: Overview of the SAP control process.

guarantees of second-order SAP in stabilizing and controlling
a large class of controllable, nonlinear and nonsmooth systems,
coupled with an online parameter estimator.

The remainder of this paper is organized as follows. First,
we provide an overview of the second-order SAC controller and
how it computes the optimal control values. Then, we present
the adaptive approach for controlling systems whose parame-
ters are uncertain or completely unknown. We demonstrate the
applicability of this approach with simulation results to trajec-
tory tracking for tail-actuated swimming using a robotic fish and
buoyancy-driven gliding in the sagittal plane. Finally, we provide
some concluding remarks and future research directions.

Second-order single action policies
As a receding horizon scheme, SAP controllers incorporate

feedback and apply a single control action at each time step as the
horizon recedes, resulting in a real-time closed-loop response to
the robot’s dynamical environment. Figure 1 depicts the process
in which a single-action policy applies a burst action—defined
by the control value u ∈ Rm, short application duration λ ∈ R+,
and application time τ ∈ R+—at each cycle. In this section, we
review how the optimal control value of an action is derived for
the specific second-order single-action policy we use. For a com-
plete discussion on this controller, the reader can refer to [3].

We consider nonlinear, control-affine dynamics of the form

f
(
t,x(t),θ ∗,u(t)

)
= g
(
t,x(t),θ ∗

)
+h
(
t,x(t),θ ∗

)
u(t), (1)

where x : R 7→ Rn is the state, θ ∗ ∈ Rp is a vector of the true
system parameters, and u : R 7→ Rm is the control.

Each cycle begins with the prediction phase,which forward
simulates the motion using the nominal dynamics f1 with control
u1 and defined by

f1 , f (t,x(t),θ ∗,u1(t)). (2)

2

Let l1 :Rn 7→R and m1 :Rn 7→R, the trajectory performance
of the system is measured by the cost function

J1 =
∫ t f

t0
l1(x(t))dt +m1(x(t f)). (3)

The prediction phase concludes with simulation of (2) and (3)
over the interval [t0, t f], where t f = t0 +T is the end of the pre-
diction horizon.

Next, the single-action policy computes a schedule (curve),
u∗2 : (t0, t f) 7→ Rm, an action value at every moment along the
predicted motion. Then, it chooses an application time τ to apply
a single, fixed-value, action u2(τ).

Given the application time τ ∈ [t0, t f], a (short) duration λ ,
and the optimal action value u∗2(τ), the perturbed control signal
is piecewise continuous. The resulting control signals u are real
and bounded, such that

u(t) =

{
u1(t), t /∈ [τ− λ

2 ,τ +
λ

2]

u∗2(τ), t ∈ [τ− λ

2 ,τ +
λ

2]
. (4)

Hence, over each receding horizon, the controller assumes
that the system evolves according to nominal dynamics f1 except
for a brief duration, where it switches to the alternate mode

f2 , f (t,x(t),θ ∗,u∗2(t)). (5)

This problem borrows content from the mode scheduling lit-
erature [1], in the sense that the change in cost (3) due to short
application of u∗2(τ) can be reinterpreted as one of finding the
change in cost due to inserting a new dynamic mode f2 into the
nominal trajectory for a short duration around t = τ . Dropping
time and parameter dependencies for brevity, the mode insertion
gradient

dJ1

dλ+
(τ,u∗2(τ)) = ρ(τ)T

[
f
(
x(τ),u∗2(τ)

)
− f
(
x(τ),u1(τ)

)]
, (6)

provides a first-order model of the change in cost (3) relative to
the duration of mode f2, where the adjoint variable ρ : R 7→ Rn

is also calculated from the nominal trajectory and is given by

ρ̇ =−∇lT
1 (x)− (∇ f T

1)ρ, (7)

with ρ(t f) = ∇mT
1 (x(t f)).

To incorporate the second-order information, the mode in-
sertion Hessian, derived in [3], is given by

d2J1

dλ 2
+

(τ,u∗2(τ)) =(f2− f1)
T

Ω(f2− f1)

+ρ
T (∇ f2 · f2 +∇ f1 · f1−2∇ f1 · f2)

−∇l1 · (f2− f1),

(8)

where Ω : R 7→ Rn×n is the second-order adjoint state calculated
from the nominal trajectory and is given by

Ω̇ =−∇ f T
1 Ω−Ω∇ f1−∇

2l1−
n

∑
i=1

ρi∇
2 f i

1, (9)

subject to Ω(t f) = ∇2mT
1 (x(t f)).

Note that (6)–(9) assume the state in f1 and f2 corresponds
to the default trajectory, which is simulated in the prediction
phase with nominal control u1.

The control solution that minimizes the second-order expan-
sion of the cost sensitivity to the injected action is given by

u∗2(t) =
(

λ 2

2
Γ+R

)−1(
λ 2

2
∆+λ (−hT

ρ)

)
(10)

where

∆ ,

hT (ΩT +Ω)h+2hT ·

[
n

∑
k=1

(∇hk)ρk

]T
u1

+(∇g ·h)T
ρ−

[
n

∑
k=1

(∇hk)ρk

]
·g+hT

∇lT

)

Γ ,

hT (ΩT +Ω)h+hT ·

[
n

∑
k=1

(∇hk)ρk

]T

+
n

∑
k=1

(∇hk)ρk ·hT

 .

The parameter R is a positive definite matrix denoting a metric
on control effort. After computing the schedule u∗2, the second-
order SAP chooses an application time τ and duration λ to apply
a single action. For a complete discussion on choosing these pa-
rameters, along with proofs of convergence guarantees and con-
vergence rate, the reader is referred to [3] and [21].

Adaptive single action policies
Adaptive control combines a parameter estimator, which

generates parameter estimates online, with a feedback law to

3

control classes of systems with unknown parameters. The way
the parameter estimator is combined with the control law gives
rise to two possible approaches [11]. In the first approach, re-
ferred to as indirect adaptive control, the plant parameters are
estimated online and used to calculate the controller parameters.
In the second approach, referred to as direct adaptive control,
the plant model is parameterized in terms of desired control pa-
rameters, which are then estimated directly without intermediate
calculations involving parameter estimates.

As indirect adaptive control can be applied to a wider class
of systems (i.e. with different controller structures [11]), we em-
ploy an indirect approach to control the class of nonlinear sys-
tems given in (1), where the system parameters θ ∗ appear lin-
early in the dynamics. To that end, we consider the class of sys-
tems that can be written as

z(t) = θ
∗T

φ(t), (11)

where θ ∗ ∈ Rp is the vector of the (unknown) true parameters,
and z ∈ R,φ ∈ Rp are signals available for measurement. A re-
cursive least-squares (RLS) approach is employed to update an
estimate. Assuming that φ ∈ L∞, the vector of parameter esti-
mate θ(t) ∈ Rp is updated by

Ṗ =−Pφφ
T P, P(0) = P0, (12)

θ̇ = Pεφ , θ(0) = θ0. (13)

Here, P0 ∈ Rp×p is a symmetric positive definite matrix, while
ε(t) ∈ R is the estimation error defined as

ε(t), z(t)−θ(t)T
φ(t). (14)

Figure 2 depicts the structure of the proposed adaptive con-
troller. The online RLS parameter estimator in (13)–(14) is com-
bined with second-order SAP and generates an estimate θ of
the true parameters θ ∗. The estimated parameters are fed back
into the second-order SAP, where they are used in the predic-
tion phase (2)-(3) and in computing optimal control values in
(10). It is worth noting that the online parameter estimator in
(13)–(14) monitors the system and updates the estimates contin-
uously. However, since the second-order SAP controller only
requires the latest available estimates at each cycle, it is possible
to employ a discrete version of the RLS estimator, given by

P(k+1) = P(k)− P(k)φ(k)φ(k)T P(k)
m+φ(k)T P(k)φ(k)

, P(0) = P0, (15)

θ(k+1) = θ(k)+
P(k)ε(k)φ(k)

m
, θ(0) = θ0. (16)

FIGURE 2: Overview of the proposed indirect adaptive SAP con-
trol architecture. The parameter estimator runs either continu-
ously or discretely to update the modeled dynamics used by the
controller for prediction and control synthesis.

Here, P0 ∈ Rp×p is a symmetric positive definite matrix, while
ε(k) ∈ R is the estimation error at time instant k defined as

ε(k), z(k)−θ(k)T
φ(k). (17)

The proposed indirect approach to adaptive scheme is ex-
pected to perform well for linearly parametrized systems that can
be written in the form (11). Since the schedule of SAC actions in
(10) stabilizes the control-affine system in (1), the overall system
can be shown to be stable by converse Lyapunov arguments as is
discussed in [13]. While linear parameterization of a nonlinear
system is a big assumption, it is not too restrictive as it is pos-
sible in many cases to overparameterize the system to simplify
the adaptive control design at the expense of parameter conver-
gence [13]. In the following section, we present how this adap-
tive scheme can be applied to nonlinear systems where overpa-
rameterization is utilized.

Simulation results
In this section we present simulation results for applying

adaptive second-order SAP to achieve trajectory tracking for two
nonlinear and underactuated robotic systems with unknown pa-
rameters: underwater gliding robotic fish in the sagittal plane,
and tail-enabled swimming for robotic fish.

Adaptive control of gliding robotic fish in sagittal plane
We consider the case of applying the adaptive scheme to

control the position of an underwater gliding robotic fish in the
sagittal plane [22] that achieves its locomotion by adjusting its
buoyancy and center of gravity. When restricting their motion

4

(a) Trajectory tracking in sagittal plane. (b) Trajectory tracking in in x-axis. (c) Trajectory tracking in in z-axis.

FIGURE 3: Comparison between the adaptive approach (adap) and the non-adaptive SAP controller (n-adap) for trajectory tracking
using an underwater glider in the sagittal plane. The percentage indicates the deviation of the model parameters from their true values.
For the adaptive controller, this indicates the initial deviation of the parameter estimates from their true values.

(a) Parameter estimation error for θ11 . . .θ16. (b) Parameter estimation error for θ21 . . .θ26. (c) Parameter estimation error for θ31 . . .θ36.

FIGURE 4: Error in parameter estimation for the underwater glider in the sagittal plane for the case where the parameters where
initialized with ±50% of their true values.

in the sagittal plane, the dynamical model for these robots is ex- pressed as

ẋ =v1 cos(θ)+ v3 sin(θ) (18)

ż =− v1 sin(θ)+ v3 cos(θ) (19)

θ̇ =ω2 (20)

v̇1 =(m1 + m̄)−1 ((m3 + m̄)v3ω2−m0gsin(θ)
+Lsin(α)−Dcos(α))

(21)

v̇3 =(m3 + m̄)−1 ((m1 + m̄)v1ω2−m0gcos(θ)
−Lsin(α)−Dcos(α))

(22)

ω̇2 =J−1
2 (M2 +(m3−m1)v1v3

−mwgrw3 sin(θ)− m̄grp1 cos(θ))
(23)5

with

L =
1
2

ρV 2S (CL0 +Cα
L α) , (24)

D =
1
2

ρV 2S
(
CD0 +Cα

Dα
2) , (25)

M2 =
1
2

ρV 2S
(
CM0 +Cα

MPα +Kq2ω2
)
. (26)

The translational velocities v1 and v3, and the angular ve-
locity ω2 are expressed in the body-fixed frame. The angle θ

represents the robot’s pitch, while α = arctan(v3
v1
) is the angle

of attack. The parameters m1 and m3 represent the stationary
and added mass elements of the system, and J2 is the inertia due
to the stationary mass distribution and the added inertia in wa-
ter. The term mw accounts for the nonuniform hull mass distri-
bution modeled as a point mass at a displacement of rw3 along
the body-fixed z-axis. The movable mass m̄ can move along the
body-fixed x-axis. The control inputs are rp1 and m0 which are,
respectively, the position of the movable mass and the net buoy-
ancy of the robot. The terms L, D, and M2 are the hydrodynamic
lift force, drag force, and pitch moment, respectively. The den-
sity of water is given by ρ , and S represents the robot’s surface

area. The term V =
√

v2
1 + v2

3 is the velocity magnitude. Finally,
the terms CL0,Cα

L ,CD0,Cα
D ,CM0,Cα

MP and Kq2 are the various hy-
drodynamic coefficients described in [22].

To fit (21)–(23) into a linear parametric model, the system is
overparameterized by substituting (24)–(26) into (21)–(23). For
example, substituting (24) and (25) into (21), and expanding the
terms yields

s
s+1

v1 =
[
θ ∗11 θ ∗12 θ ∗13 θ ∗14 θ ∗15 θ ∗16

]


− v3ω2
s+1

−m0 sin(θ)
s+1

V 2 sin(α)
s+1

αV 2 sin(α)
s+1

−V 2 cos(α)
s+1

−α2V 2 cos(α)
s+1


, (27)

with

θ
∗
11 =

m3 + m̄
m1 + m̄

, θ
∗
12 =

g
m1 + m̄

,

θ
∗
13 =

ρSCL0

2(m1 + m̄)
, θ

∗
14 =

ρSCα
L

2(m1 + m̄)
,

θ
∗
15 =

ρSCD0

2(m1 + m̄)
, θ

∗
16
∗ =

ρSCα
D

2(m1 + m̄)
.

Similarly, the process was repeated for (22) and (23), yielding

s
s+1

v3 =
[
θ ∗21 · · · θ ∗26

][
φ21 · · · φ26

]T
, (28)

s
s+1

ω3 =
[
θ ∗31 · · · θ ∗36

][
φ31 · · · φ36

]T
. (29)

The second-order SAP controller and its adaptive counter-
part were applied to the system, with a prediction horizon of
T = 3 s and a sampling period of ts = 0.1 s, where the true param-
eters of the system were obtained from [22]. The cost function
used to measure the trajectory performance is given by

J1 =
∫ t f

t0
x̃(t)T QJ x̃(t)dt + x̃(t f)PJ x̃(t f),

where x̃(t) , x(t)− x∗(t) is the trajectory tracking error, while
QJ = diag(104,104,0,0,0,0) and PJ = diag(103,103,0,0,0,0)
represent a metric for the running and terminal tracking error, re-
spectively. The desired trajectory x∗(t) = [xd(t),zd(t),0,0,0,0]T

was constructed to mimic multiple dives in the z-direction while
the robot continues to travel forward, i.e.,

xd(t) = 0.2t,

zd(t) = 3sin2
(

2π

200
t
)
.

The parameters were estimated by applying the discrete-
time RLS parameter identifier (15)–(17) to each of the parametric
models in (27)–(29). Each of the parameter identifiers was ini-
tialized with P1(0) = P2(0) = P3(0) = 5×104I, while the initial
parameter estimates were set through varying the system’s true
parameters by a certain percentage, i.e., θ(0) = (1±ζ)θ ∗.

Figure 3 depicts the controller performance in tracking the
desired trajectory. We compare the performance of the adap-
tive and non-adaptive controllers when the parameters deviate
by ±25% and ±50% from their true values. The trajectories la-
beled n-adap XX% show the performance when the wrong pa-
rameters were used by the non-adaptive controller (i.e. the pa-
rameters were not updated and the initial parameters are used
throughout the simulation). On the other hand, the trajectories
adap XX% represent the system’s performance when using the
adaptive controller, and the parameters are estimated online. As
is seen from Figure 3, estimating the parameters improves the
system’s performance. More importantly, comparing the track-
ing performance with 50% wrong parameters, the adaptive struc-
ture results in good tracking performance while the non-adaptive
controller fails at tracking the desired trajectory.

Figure 4 shows the parameter estimation errors θ ∗1 − θ1(t),
θ ∗2 −θ2(t), and θ ∗3 −θ3(t). Only partial parameter convergence

6

was achieved, as some parameters did not converge to their true
values. This issue is commonly encountered when the system
is overparametrized to allow for linear parameterization of the
system. However, the adaptive controller was still able to track
the desired trajectory tracking with high accuracy.

Adaptive control of tail-actuated swimming for robotic
fish

We now consider the case of applying the adaptive con-
troller to perform trajectory tracking using a robotic fish with
tail-actuated swimming. These robots achieve locomotion by
continuously flapping their tail. Rather than controlling the tail
position at every moment in time, it is typical to control the am-
plitude and bias of the tail flapping under a constant flapping
frequency [23, 24]. The simplified averaged model of the robot
is given by

ẋ =v1 cos(ψ)− v2 sin(ψ) (30)

ż =v1 sin(ψ)+ v2 cos(ψ) (31)

ψ̇ =ωz (32)

v̇1 =
m2

m1
v2ωz−

c1

m1
v1

√
v2

1 + v2
2

+
c2

m1
v2

√
v2

1 + v2
2 arctan(

v2

v1
)

+
K f mL2

12m1
ω

2
α α

2
a (3−

3
2

α
2
0 −

3
8

α
2
a)

(33)

v̇2 =−
m1

m2
v1ωz−

c1

m2
v2

√
v2

1 + v2
2

− c2

m2
v2

√
v2

1 + v2
2 arctan(

v2

v1
)

+
K f mL2

4m2
ω

2
α α

2
a α0

(34)

ω̇z =(m1−m2)v1v2− c4ω
2
z sgn(ωz)

− KmmL2

4J3
cω

2
α α

2
a α0

(35)

where v1,v2, and ωz are the surge, sway, and angular velocities
of the robot, while x,y are the robot’s position in 2D and ψ is its
yaw angle. The various model parameters are represented by the
variables m1,m2,c,c1,c2,Km,K f ,m,L, and c4. Finally, the tail
flapping frequency is given by ωα , while αa and α0 represent the
flapping amplitude and bias, respectively.

Similarly to the underwater glider model, we can rewrite

(33)–(35) in a linear parametric form

s
s+1

v1 =
[
θ ∗11 · · · θ ∗14

][
φ11 · · · φ14

]T
, (36)

s
s+1

v2 =
[
θ ∗21 · · · θ ∗24

][
φ21 · · · φ24

]T
, (37)

s
s+1

ωz =
[
θ ∗31 · · · θ ∗33

][
φ31 · · · φ33

]T
. (38)

The second-order SAP controller and its adaptive counter-
part were applied to the system, controlling the squared flapping
amplitude α2

a and flapping bias α0 with the flapping frequency
ωz fixed at 3π/2. The prediction horizon for both controller was
set to T = 10 s with a sampling period of ts = 0.2 s, where the
true parameters of the system were obtained from [24]. The cost
function used to measure the trajectory performance is given by

J1 =
∫ t f

t0
x̃(t)T QJ x̃(t)dt + x̃(t f)PJ x̃(t f),

where x̃(t) , x(t)− x∗(t) is the trajectory tracking error, while
QJ = diag(104,104,0,0,0,0) and PJ = diag(103,103,0,0,0,0)
represent a metric for the running and terminal tracking error, re-
spectively. The desired trajectory x∗(t) = [xd(t),yd(t),0,0,0,0]T

was that of a circular trajectory centered around (x,y) = (0,0.5),
i.e.,

xd(t) =0.5sin
(

2π

180
t
)
,

yd(t) =0.5
(

1− cos
(

2π

180
t
))

.

The parameters were estimated by applying the discrete-
time RLS parameter identifier (15)–(17) to each of the paramet-
ric models in (36)–(38). Each of the parameter identifiers was
initialized with P1(0) = P2(0) = P3(0) = 108I, while the initial
parameter estimates were set through varying the system’s true
parameters by a certain percentage, i.e., θ(0) = (1±ζ)θ ∗.

Figure 5 depicts the controller performance in tracking the
desired trajectory using the tail-actuated robotic fish. We com-
pare the performance of the adaptive and non-adaptive con-
trollers when the parameters deviate by ±50% and ±90% from
their true values. The trajectories labeled n-adap XX% show the
performance when the wrong parameters were used by the non-
adaptive controller (i.e. the parameters were not updated and
the initial parameters are used throughout the simulation). On
the other hand, the trajectories adap XX% represent the system’s
performance when using the adaptive controller, and the param-
eters are estimated online. As is seen from Figure 5, estimating

7

(a) Tracking a circular trajectory in the XY plane. (b) Trajectory tracking in in x-axis. (c) Trajectory tracking in in y-axis.

FIGURE 5: Comparison between the adaptive approach (adap) and the non-adaptive SAP controller (n-adap) for trajectory tracking
using a tail-actuated robotic fish. The percentage indicates the deviation of the model parameters from their true values. For the adaptive
controller, this indicates the initial deviation of the parameter estimates from their true values.

(a) Parameter estimation error for θ11 . . .θ14. (b) Parameter estimation error for θ21 . . .θ24. (c) Parameter estimation error for θ31 . . .θ33.

FIGURE 6: Error in parameter estimation for the tail-actuated robotic fish for the case where the parameters where initialized with±90%
of their true values.

the parameters improves the system’s performance. More impor-
tantly, comparing the tracking performance with 90% wrong pa-
rameters, the adaptive structure results in much improved track-
ing performance over using the non-adaptive controller.

Figure 6 shows the parameter estimation errors θ ∗1 − θ1(t),
θ ∗2 − θ2(t), and θ ∗3 − θ3(t). Similarly to the underwater glider
system, only partial parameter convergence was achieved, as
some parameters did not converge to their true values. This issue
is commonly encountered when the system is overparametrized
to allow for linear parameterization of the system. However, the
adaptive controller was still able to track the desired trajectory
tracking with high accuracy.

Conclusion and Future Work

To ensure successful operation, model-based algorithms re-
quire adequate description of the system’s model and its underly-
ing parameters. In some applications this poses a real limitation,
as it might be difficult to measure some parameters directly, or
because of the variability of these parameters depending on the
environment the system is operating in. To overcome these chal-
lenges, it is desirable to estimate these parameters online while
ensuring successful operation. In this paper we present a new
adaptive scheme for nonlinear systems that combines a second-
order single action policy controller with an online parameter es-
timator to update the system parameters used for prediction and
control synthesis. This scheme offers a simple, yet effective, ap-
proach to controlling nonlinear systems with unknown parame-
ters, and further improves the robustness of the SAP controller.

8

Simulation results are shown for applying the proposed adaptive
structure to trajectory tracking for an underwater glider in the
sagittal plane and tail-actuated robotic fish, and demonstrate the
advantages of utilizing this structure when the model parameters
are deviate from their true values, or are completely unknown.
Future work will focus on the stability of the closed loop system
under the proposed approach, with experimental work to further
validate the applicability of this approach.

REFERENCES
[1] Ansari, A. R., and Murphey, T. D., 2016. “Sequential

action control: Closed-form optimal control for nonlinear
and nonsmooth systems.”. IEEE Trans. Robotics, 32(5),
pp. 1196–1214.

[2] Mamakoukas, G., MacIver, M. A., and Murphey, T. D.,
2016. “Sequential action control for models of underac-
tuated underwater vehicles in a planar ideal fluid”. In 2016
American Control Conference (ACC), pp. 4500–4506.

[3] Mamakoukas, G., MacIver, M. A., and Murphey, T. D.,
2018. “Feedback synthesis for underactuated systems using
sequential second-order needle variations”. The Interna-
tional Journal of Robotics Research, 37(13-14), pp. 1826–
1853.

[4] Allgöwer, F., and Zheng, A., 2012. Nonlinear model pre-
dictive control, Vol. 26. Birkhäuser.

[5] Tassa, Y., Erez, T., and Smart, W. D., 2008. “Receding
horizon differential dynamic programming”. In Advances
in neural information processing systems, pp. 1465–1472.

[6] Tassa, Y., Erez, T., and Todorov, E., 2012. “Synthe-
sis and stabilization of complex behaviors through on-
line trajectory optimization”. In 2012 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems,
IEEE, pp. 4906–4913.

[7] Andrievsky, B., Peaucelle, D., and Fradkov, A. L., 2007.
“Adaptive control of 3DOF motion for LAAS helicopter
benchmark: Design and experiments”. In 2007 American
Control Conference, pp. 3312–3317.

[8] Pereira, A. R., Hsu, L., and Ortega, R., 2009. “Globally
stable adaptive formation control of Euler-Lagrange agents
via potential functions”. In 2009 American Control Con-
ference, pp. 2606–2611.

[9] Mingji, L., Zhongqin, C., Ximing, C., and Minggao, O.,
2004. “Adaptive position servo control of permanent mag-
net synchronous motor”. In Proceedings of the 2004 Amer-
ican Control Conference, Vol. 1, pp. 84–89 vol.1.

[10] Tzorakoleftherakis, E., Ansari, A., Wilson, A., Schultz, J.,
and Murphey, T. D., 2016. “Model-based reactive control
for hybrid and high-dimensional robotic systems”. IEEE
Robotics and Automation Letters, 1(1), pp. 431–438.

[11] Ioannou, P., and Fidan, B., 2006. Adaptive control tutorial,
Vol. 11. Siam.

[12] Krstic, M., Kanellakopoulos, I., Kokotovic, P. V., et al.,
1995. Nonlinear and adaptive control design, Vol. 222.
Wiley New York.

[13] Qu, Z., Hull, R. A., and Wang, J., 2006. “Globally stabiliz-
ing adaptive control design for nonlinearly-parameterized
systems”. IEEE Transactions on Automatic Control, 51(6),
pp. 1073–1079.

[14] Lozano, R., and Zhao, X.-H., 1994. “Adaptive pole place-
ment without excitation probing signals”. IEEE Transac-
tions on Automatic Control, 39(1), pp. 47–58.

[15] Limanond, S., and Tsakllis, K., 2000. “Model reference
adaptive and nonadaptive control of linear time-varying
plants”. IEEE Transactions on Automatic Control, 45(7),
pp. 1290–1300.

[16] Fukushima, H., Kim, T.-H., and Sugie, T., 2007. “Adap-
tive model predictive control for a class of constrained lin-
ear systems based on the comparison model”. Automatica,
43(2), pp. 301–308.

[17] Sastry, S. S., and Isidori, A., 1989. “Adaptive control of lin-
earizable systems”. IEEE Transactions on Automatic Con-
trol, 34(11), pp. 1123–1131.

[18] Zarchi, H. A., Soltani, J., and Markadeh, G. A.,
2010. “Adaptive input–output feedback-linearization-based
torque control of synchronous reluctance motor without
mechanical sensor”. IEEE Transactions on Industrial Elec-
tronics, 57(1), pp. 375–384.

[19] Zhou, J., and Wen, C., 2008. Adaptive backstepping con-
trol of uncertain systems: Nonsmooth nonlinearities, inter-
actions or time-variations. Springer.

[20] Matthew, J. S., Knoebel, N. B., Osborne, S. R., Beard,
R. W., and Eldredge, A., 2006. “Adaptive backstepping
control for miniature air vehicles”. In 2006 American Con-
trol Conference, pp. 6–pp.

[21] Mamakoukas, G., MacIver, M. A., and Murphey, T. D.,
2018. “Superlinear convergence using controls based on
second-order needle variations”. In 2018 IEEE Conference
on Decision and Control (CDC), IEEE, pp. 4301–4308.

[22] Zhang, F., 2014. “Modeling, design and control of gliding
robotic fish”. PhD thesis, Michigan State University.

[23] Castaño, M. L., and Tan, X., 2016. “Model predic-
tive control of a tail-actuated robotic fish”. In ASME
2016 Dynamic Systems and Control Conference, Ameri-
can Society of Mechanical Engineers, pp. V001T03A006–
V001T03A006.

[24] Castaño, M., and Tan, X., 2019. “Model predictive control-
based path following for tail-actuated robotic fish”. Journal
of Dynamic Systems, Measurement, and Control.

9

